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Abstract. Much of the work on verifying software has been done on
simple, often artificial, languages or subsets of existing languages to avoid
difficult details. In trying to verify a secure application written in C, we
have encountered and overcome some semantically complicated uses of
the language.

We present inference rules for assignment statements with pre- and post-
evaluation side effects and while loops with arbitrary pre-evaluation side
effects in the test expression. We also discuss the need to abstract the
semantics of program functions and present an inference rule for abstrac-
tion.

1 Introduction

In 1969 Hoare published axiomatic semantics for proving programming languages
[14] which Gordon implemented in HOL [9]. More recently there has been work
such as Hale’s Reasoning About Software [11], Agerholm’s Mechanizing Program
Verification [1], Curzon’s Verified Compiler [7], work on distributed systems [13,
20], embedding TLA [4, 18], etc.

Most work has been on relatively simple languages. Verifying programs writ-
ten in commonly used production languages, such as C, has lagged. Produc-
tion languages are generally very rich, with many overlapping features instead
of a minimal set, to express different kinds of algorithms and data structures
succinctly. Models which completely describe the semantics of such production
languages are very complicated.

The object of this work is thttpd, a secure http daemon written in C. It is
engineered to provide information to the World Wide Web and to be free of
security flaws, even in the presence of a few operating system bugs or adminis-
trative errors. The code has a five page informal proof of correctness, and has
been reviewed and critiqued by dozens of experts. The code for thttpd seems
like an ideal candidate for a formal proof, and the proof would add real value.

In order to prove thttpd, we began with code from Harrison [13], but soon
extended it with rules from Gordon [9] and wrote goal-directed tactics instead of
using Harrison’s forward inference functions. We also express code in the rules
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as an abstract syntax tree, rather than HOL strings. A parser [19] converts C
code into equivalent abstract syntax trees.

Sect. 2 summarizes the design goals of thttpd. Sect. 3 presents our inference
rules for pre-evaluation side effects, post-evaluation side effects, while loops
with side effect tests, and function calls. We include an example from thttpd in
Sect. 4 to demonstrate some of the complexities we encountered. Finally Sect. 5
lists some future work, and Sect. 6 is our conclusions.

2 A Secure HTTP Daemon

In June 1995, Management Analytics wrote a secure http? daemon, thttpd. The
code is about 100 lines of C. They explain [5, 6] the goals of the daemon and
why they believe it to be secure:

The main risk to providers of [web] services is that someone might be
able to fool their server software into doing something it is not supposed
to do, thus allowing an attacker to break into their server ...

They continue that their

. solution to the security problem with servers is to design a secure
server with security properties that can be explicitly demonstrated.

They then list the properties.

The general properties of interest to us are (in order of highest to lowest
priority):

— Information Integrity - We want to assure that the information re-
siding on the server is not corrupted by the actions of outside users
as a result of their use or abuse of the secure service.

— Availability of Service - We want to assure that outside users of the
service cannot make the server unusable for other users as a result
of their use or abuse of the secure service.

— Confidentiality - We want to assure that the service only provides
information to outside users that is explicitly authorized for outside
access.

We would also like to assure these properties to an even higher degree for
information not explicitly designated for outside use than for information
that is explicitly designated for outside use.

They verified the properties by argument, but we want to formally verify them.
Trying to verify a program which was written in a semantically complex lan-
guage, C, led us to face problems which are typically avoided such as

— side effects,
— function calls in tests, and
— function semantics abstraction.

2 HTTP, the HyperText Transfer Protocol, is the most commonly used protocol for
the World Wide Web on the Internet. HI'TP is operational similar to FTP, but has

been enhanced and optimized for Web interaction.



3 Inference Rules for Side Effects

We use Hoare axiomatic semantics to express the correctness of program state-
ments. The representation for partial correctness is

F {P} code {Q}

This means, if predicate P is true of the current state, executing code results in
a state in which predicate Q is true.3

3.1 A Rule for Pre-evaluation Side Effects

The assignment axiom for v = expr; is
F {Q0epr} v = expr; {Q)

as long as expr doesn’t have any side effects ([9], pp. 15-17). That is, if ngpr4
is true and the assignment is executed, Q will be true. Since C statements may
have side effects, this does not apply. As a simple example, the semantics of a =
2 * ++b; is well defined [12] (it is equivalent to the compound statement ++b;
a = 2 * b;), but the statement modifies the values of b as well as a.

To reason about it, we introduce a rule to separate pre-evaluation side effects,
that is, side effects which take place before the expression is evaluated.

F SEM_EQ (PreEval expr si1) s2
F {pre} expr; {interim}
F {interim} s1 {post}

F {pre} s2 {post}

(1)
Informally, if

— s1 is semantically equivalent® to s2 with expr removed and pre-evaluated,
— one can prove {pre} expr; {interim}, and
— one can prove {interim} s1 {post}

one can conclude {pre} s2 {post}.

Why add another inference rule just to separate side effects? Homeier’s lan-
guage, Sunrise [15], has an operator with a side effect, increment, which can
occur in test expressions. He handles this by embedding the semantics of the op-
erator in the inference rules. However functions, which have arbitrary semantics
including side effects, can occur in loop or test expressions in C. Even statements
without function calls can have multiple side effects using, say, increment and
assignment operators. We take this more general approach to be able to separate
a side effect from the expression in which it occurs.

® That is, if code terminates. A total correctness theorem F [P] code [Q] (note square
brackets) means if P is true and code executes, Q is true and code always terminates.
* The notation ngpr denotes Q with all free occurrences of v replaced by expr. For

instance, (g * (h—l— 1))2_1) is ((i-1)*(h+1)).
® We have shallowly embedded our logic for now. That is, SEMEQ is defined as
Vsl s2 . SEMEQ s1 s2 = T and an ML function checks equivalence and special-

izes the definition. Eventually we will prove this from a definitional semantics.



3.2 A Rule for Post-evaluation Side Effects

C allows post-evaluation side effects in expressions in addition to pre-evaluation
side effects. The statement a = 2 * b++; is well defined, just as the pre-eval-
uation case. The statement can be broken down into the equivalent compound
statement a = 2 * b; b++;.

The following rule is similar to the pre-evaluation side effect rule (1).

- SEM_EQ (PostEval expr s1) s2
F {pre} s1 {interim}
F {interim} expr; {post}

F {pre} s2 {post}

(2)

Briefly if

— s1 is semantically equivalent to s2 with expr removed and post-evaluated,
— one can prove {pre} s1 {interim}, and
— one can prove {interim} expr; {post}

one can conclude {pre} s2 {post}.

3.3 A Rule for Wwhile Loops with Side Effects

In simple languages the inference rule for a while loop, or backward jump, is
straight forward:

F IS_VALUE expr test
F {invariant A test} body {invariant}

3
F {invariant} while expr body {invariant A ~test} (3)
IS_.VALUE means that test is the HOL equivalent of expr.

When test expressions can have side effects, the rule is more complex. Note
that the pre-evaluation side effect rule (1) does not apply. Otherwise one could
prove

while (pre-eval side-effects in expr)
body

by proving

pre-eval side-effect;
while (expr)
body

but the side effect is not executed every loop! (One purpose of the SEM_EQ
(PreEval ...) condition in rule 1 is to prevent the rule from being applied
incorrectly to while loops, for loops, etc.) Conceptually a while loop with
pre-evaluation side effects must be verified as



while-begin-tag:
{interim}
pre-eval side-effect;
{invariant}
if (expr)
{invariant /\ test}
body
goto while-begin-tag
{invariant /\ “test}

The inference rule for while statements is then

- SEM_EQ (PreEval sexpr testExpr;) expr;
V (testExpr = expr) A (sexpr = expr)

F {interim} sexpr; {invariant}

F IS_VALUE testExpr test

F {invariant A test} body {interim}

F {interim} while expr body {invariant A ~test}
In other words if

— FEither testExpr is semantically equivalent to expr with sexpr removed and
pre-evaluated or expr is used for sexpr and testExpr,

— one can prove {interim} sexpr; {invariant},

— test is the HOL equivalent of testExpr, and

— one can prove {invariant A test} body {interim}

one can conclude {interim} while expr body {invariant A ~test}.

We allow (testExpr = expr) A (sexpr = expr) in the first condition in case
expr has no side effects. Note that, when expr has no side effects, testExpr =
sexpr = expr and interim = invariant, reducing this rule to the standard

rule (3).

3.4 Function Call Abstraction

The program thttpd uses 15 library and operating system functions. All of them
are important to the correct operation of the program. When the correctness of
the program depends on these functions, how can the program be verified?
Often the approach is to essentially include the body of the called function
in the code to be verified ([8], page 151). However this won’t work for several
reasons. First, we don’t have access to the operating system code. Even if we
did, thttpd should be independent of any one operating system. Second, we do
not want to repeat all the work of verifying operating system or library functions
every time they are used; verification would never scale up to large projects.
Finally, programmers rarely use all the functionality of an operating system
call in one piece of code. So we only need partial semantics to prove the cor-
rectness of code. For instance, thttpd calls time to log when actions are taken.



Since the properties of interest mentioned in Sect. 2 don’t include the log, re-
turning the wrong time does not violate the top-level security policy! That is,
the reliable operation of thttpd is not dependent on which time is returned, only
that some time is. Hence we need some way to abstract the semantics of a func-
tion call. Jones [17] treats this problem by using extended type checking, but
non-rigorously.

Similarly to Homeier [15] we declare axioms to express the operation of library
and system functions. For example, we declare time as

F {T} time(int *tloc)
{(C_Result = 0) A (ITIME _errno.errno = TIME _errno) V
Jsome_time.(C_Result = some_time) A C_Result > 0 A
~(tloc = NULL) — (deref(tloc) = some_time)}

That is, either C_Result® is 0 and errno is set, or C_Result is set to some
non-zero time and that time is also put in tloc if tloc is not null.

The inference rule to abstract function call semantics from a function decla-
ration is (after [10])

F DECLARE type funcName formals body

F {pre} body {post}
b formalsToActuals formals actuals

F SUBST pre formals actuals preSub
F SUBST post formals actuals postSub

F {preSub} funcName(actuals) {postSub}

That is, if

— funclName is declared with formals and body,

— one can prove {pre} body {post},

— one can prove that the actuals are equivalent to the formals,
— preSub is pre with the formals replaced by the actuals, and
— postSub is post with the formals replaced by the actuals

one can conclude that calling funcName with the actuals in a state satisfying
preSub results in a state satisfying postSub.

4 An Example From thttpd

This section presents one function from thttpd and outlines a verification showing
how system calls and side effects are handled.

% The special variable C_Result is the result or return value of the function call.



4.1 Code and Operation

We present the function logfile. This function records an access by a remote
user from a remote machine by writing the user’s and machine’s name along
with the time to a log file. Here is the code and applicable declarations:

char timestamp[64], remotehost[BUFSIZE], remoteuser [BUFSIZE];

void logfile(F)

FILE *F;

{time_t t;

t=time(NULL);strftime(timestamp, 20, "%Y/%m/%d %T",localtime(&t));
fprintf(F,"%s %s %s ",remotehost,remoteuser,timestamp);’}

In detail, the function logfile gets the current “time in seconds since the
Epoch” [16] with the call of time. The call of localtime returns the time con-
verted to the local time zone, and strftime formats the time as “yyyy/mm/dd
hh:mm:ss” and saves it in timestamp. Finally logfile writes the timestamp
to the file F along with the requesting user’s name and the name of the user’s
computer by calling fprintf.

Two of the system calls used in thttpd have complicated semantics: time,
whose semantics we gave in Sect. 3.4, and strftime, which is

F {7} strftime(char *s, int maxsize, char x*format, tm x*timeptr)
{(strlen(str ftimeSpec(format, timeptr)) < maxsize =
(C_Result = strlen(s) A stremp(s, str ftimeSpec( format, timeptr)) = 0)
| (C_Result = 0))

A(Vindex.accessed(s, index) — index > 0 A index < maxsize)}

The function strftime returns the length of the string which it placed in s. If the
string exceeds maxsize, zero is returned and the contents of s are indeterminate.
Note that this is not the full semantics of strftime; no mention is made, for
instance, of mapping from the month number and locale into a full month name
for the ¥%B format or the hundreds of other details of strftime. But this level of
detail is sufficient for thttpd.

4.2 Verifying System Calls and Side Effects
We begin verifying logfile by using the function rule (4) with the assumption
!s. strlen(strftimeSpec(‘%AY/%m/%d 4T ,s)) < 20

(informally: any time formatted with %Y/%m/%d %T yields a string less than 20
characters long) and take care of the call of time. Then we use an inference rule
for sequential statements to separate the strftime statement from the fprintf.
The condition after strftime must be that timestamp has a formatted time
string:

"strcmp(timestamp, strftimeSpec(‘%Y/%m/%d %T‘,tsptr))=0"



Notice that the call of localtime is embedded in the call of strftime. We
separate it with the pre-evaluation side effect rule (1) and prove it with an axiom
for its semantics.

Now we prove the call of strftime. In the following, CALL_TAC sets a goal to
weaken the postcondition from the that given in the axiom. We rewrite with the
definition of conditional (=) from COND_CLAUSES to simplify it. Next a selector
function, chooseStrcmp (generated by find filter [3]), selects the initial as-
sumption (that the output is always less than the maximum size) and a rewrite
solves the subgoal.

e(CALL_TAC SYS_strftime THEN
ASM_REWRITE_TAC [COND_CLAUSES] THEN
REPEAT STRIP_TAC THEN
let chooseStrcmp (t:term) =
(fst o dest_var o rator o rand o rator)t=‘strcmp‘?false in
ASSUM_LIST (\thl .
UNDISCH_TAC (find chooseStrcmp (map (snd o dest_thm) thl)))
THEN ASM_REWRITE_TAC [1);;

The proof of the final statement follows quickly and this verification is done.

5 Future Work

We plan to prove our inference rules and predicates, such as SEM_EQ, from a
denotational semantic of C. We also plan to rework from the current HOLS8S to
HOL90.

For post-hoc verification of C programs to be practical, we must improve
the various tactics so they will prove more subgoals automatically. Even better
would be to change to a verification condition generator style.

We need to add inference rules to handle straight-forward array accesses.
Notice that thttpd uses arrays very conservatively. We believe an approach such
as [9] (page 31) will suffice.

Currently Hoare style axiomatic semantics only allow for a single postcondi-
tion. Since we are mostly concerned with partial correctness, both return and
exit are modeled with a postcondition of F'. That is, since control never flows
from a return or exit to an immediately subsequent statements, any condition
is allowed. However verifying total correctness with these jumps may be difficult.
Therefore we plan to introduce multiple exit conditions as suggested in [2]. This
will allow us to reason about continue and break statements in loops as well
as return statements.

Much work is needed on function calls. How can we supply different levels of
abstraction of operating system and library function calls for different needs?

Finally, we have the skeleton of the proof for thttpd almost done. With arrays
we can finish the proof, but the properties proved are quite weak. We will go
back through the proof with formalizations of the properties of interest and flesh
out the proof. Then we believe that we can fairly claim to have formally verified



the program. Management Analytics has several other servers which should be
simple to prove once the infrastructure is done.

6 Conclusions

Our work on a well-engineered production program written in a complex lan-
guage exposed a number of technically interesting problems, such as side effects
and abstracting function semantics. We propose a number of new inference rules
to handle

— pre-evaluation side effects more generally than before,
— post-evaluation side effects, and
— pre-evaluation side effects in loop tests.

We also point out the importance of abstracting the semantics of functions in
doing large proofs or proofs involving operating system or library calls. Work
on simple or primarily academic languages is fruitful, but verifying “industrial”
languages is possible and useful. With the computer performance and theorem
provers available today, the complexities found in industrial programs need not
be a barrier to real verifications.
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